神秘的量子生命(一):生命是什么
活力论与机械论古希腊的哲人们是探究生命问题的第一批人。他们认为,生物体与非生物体的区别就在于生物体内有一种特殊的生命“活力”,它控制和规定着生物的全部生命活动和特性,而不受自然规律的支配。“牛顿力学“提出后,人们开始认识到力与“能量”的概念密不可分。人们认为,不可见的力以能量波的形式在空间中传播或是利用“力场” (force field)发生作用。 机械论最初是在17世纪由法国哲学家勒内·笛卡儿提出的,他认为植物和动物的身体,包括人类在内,都不过是由传统材料制成的精密机械,由泵、齿轮、活塞和凸轮等机械装置提供动力, 而这些机械装置的动力与支配非生命体运动的力量相同。 生命科学新发现细胞 在人类对生命精密结构的探寻中,第一次重大的进步来自17世纪的自然哲学家罗伯特·胡克 (Robert Hooke)与荷兰显微镜研究者安东·列文虎克(Anton van Leeuwenhoek)。他们在显微镜的帮助下看到了细胞的结构。 随着科学进步,人们发现组成生命体的物质似乎与构成非生命体的化学物质是相同的,并因此遵循相同的化学规律,于是活力论渐渐让位于机械论。人们普遍相信,生命实际上不过是热力学的进一步拓展。 基因 1902年,美国遗传学家沃尔特·萨顿(Walter Sutton)发现,一种叫作“染色体”的细胞内结构遵循孟德尔式“因素”的遗传规律,他据此提出基因位于染色体上。 1943年,加拿大科学家奥斯瓦尔德·艾弗里(Oswald Avery)通过从供体细胞中提取DNA并注入受体细胞中,成功地将一组基因从一个细菌细胞转移到了另一个细菌细胞。这个实验说明,在染色体中携带所有关键遗传信息的物质是DNA。 1953年,詹姆斯·沃森(James Watson)和弗朗西斯·克里克(Francis Crick)成功地设计出了一个能与从DNA中获得数据相匹配的结构模型:双螺旋结构。DNA结构的发现为解锁基因之谜提供了一把机械论的钥匙。 合成生物学 凡是我们做不出来的,就是我们还不理解的。
——理查德·费曼(Richard Feynman) 生命的第一个谜题是在每个活细胞内生化反应的极度复杂性。当化学家要生产一种氨基酸或糖类时,他们几乎总是一次只合成一种产品,通过精心地控制该制备实验的条件,比如温度和不同原料的浓度,来优化对目标化合物的合成。然而在人体内的每个活细胞中,在一个仅仅容纳着一微升液体的百万分之几的单一反应室内,同时合成着数以千计不同的物质。 这些不同的反应是如何同时发生的? 生命的另一个谜题是死亡。化学反应的一个特征是可逆性。“底物→产物”与“产物→底物”同时发生,只不过在一定的条件下,总有一个方向会倾向于占据主导地位。生命却迥然不同,还从没有人发现过能使下面的反应发生的条件:死细胞→活细胞。 合成生物学最著名的实践者克雷格·文特尔(Craig Venter)在2010年宣称自己创造出了人造生命。但文特尔不是完完全全地创造了一个新的生命,而是巧妙地诱导该活菌将自己原先那条单一的染色体替换成合成的DNA。 相比之下,我们每个人都能毫不费力地将食物中的惰性化学物质转化为自己身上鲜活的血肉。 量子力学,物理学的一场革命“量子”概念的提出 传统观点认为,与其他形式的能量类似,热辐射在空间中以波的形式进行传播。然而波理论无法解释某些发热物体的能量辐射现象。20世纪初,普朗克提出了一种全新的观点:发热体表面的物质在以一定的离散频率振动,导致热能只能通过微小而离散的能量团进行辐射,而且这些能量团不可以再分,普朗克称其为“量子”。 五年后,爱因斯坦拓展了普朗克的理论,并提出包括光在内的所有电磁辐射都是“量子化”的,而非连续的。以这种方式来思考“光”,能够解释一个长期以来困扰物理学家的现象——在高于特定频率的电磁波照射下,光可以将物质内部的电子激发出来,即“光电效应”。 玻尔的贡献 卢瑟福提出了著名的原子行星模型,认为原子的中心有一个极小而致密的原子核,周围环绕着更加微小的、在轨道中旋转的电子。根据传统的电磁理论,当绕着带正电的原子核旋转时, 带负电的电子会持续地释放光能。如果这样,电子会失去能量并很快朝着原子核螺旋向内移动,导致原子塌缩。但事实上,电子并没有发生这种情况。 为了解释原子的稳定性,玻尔提出,电子并不能自由地占据原子核外的任意轨道,而是只能占据某些固定的或量子化的轨道。电子只能从一个轨道跃迁到下一个较低的轨道,并释放与两个轨道的能级差完全相同的一团电磁能(一个光子),也就是量子。相应地,如果电子跃迁到一个更高的轨道上,就需要吸收一个具有相应能级差的光子的能量。 海森堡不确定性原理 海森堡认为,如果我们不是正在测量,那么我们将无法说出原子中电子的准确位置。不仅如此,由于电子以一种不可知的模糊方式运行,电子本身就没有一个确定的位置。海森堡从数 学上论证,要想设计单一的实验,按照我们的意愿同时测量一个电子的位置和其移动的速度是不可能的。这个概念被简要地概括为“海森堡不确定性原理”(Heisenberg Uncertainty Principle)。 薛定谔波动方程 薛定谔认为,电子并不是一个位置不可知的、模模糊糊的粒子,而是在原子内传播的波,只不过我们一观测,就会“塌缩”为一个离散的粒子。 定谔的原子理论后来成了波动力学(wave mechanics),而薛定谔方程也以描述原子内波的进化和运动而闻名。今天,我们认为海森堡与薛定谔的理论是对量子力学的两种不同的数学解读,在各自的视角下,他们都是正确的。 量子生物学的兴起1932年约尔旦提出了“放大理论”(amplification theory)。他指出,非生命物体由数以百万计的大量粒的平均随机运动来控制,单一分子的运动对整个物体的影响微乎其微。但是他认为生命却大不相同,因为生命是由处于“控制中心”内的极少数分子来管理的,这些分子具有独裁式的影响力。影响关键分子运动的量子事件(比如海森堡不确定性原理)将被放大,对整个生命体产生影响。 来自有序的有序让薛定谔萌生兴趣的是遗传过程的精确性。薛定谔知道,诸如热力学定律之类的经典物理学与化学规律,虽然精确可以重复验证,但实质上都是统计规律,背后是原子或分子的随机运动,只有在包含了极大量的粒子相互作用后,才是可靠的。 气球中气体遵循受热膨胀、遇冷收缩的规律。但事实上,气球里数以兆计的分子做着完全随机的运动。完全无序的运动是如何产生出秩序井然的定律的呢?当气球被加热时,气体分子运动加剧,使它们在互相碰撞或与气球内壁碰撞时的力量有了轻微的增加。额外的力对气球的弹性表面产生更多压力,使其扩张。气球有序运动来自极大量粒子的无序运动,用薛定谔的话说,产生了“来自无序的有序”(order from disorder )。 反观一个微观的气球,一个小到只填充有几个气体分子的气球:即使在恒温下,这几个分子也会间或地、完全随机地互相远离,使气球膨胀,同理,它们也偶尔会完全随机地向内运动,使气球收缩。一个极小气球的行为将变得不可预测。 经典物理学的所有统计规律都受制于这样的限制:对于由极大量粒子组成的物体来说,它们是 正确的,但它们却不能描述由少量粒子组成的物 体的行为。 薛定谔并不只是简单地认识到经典物理学的统计规律在微观层面并不适用,他更近一步量化 了精确性衰退的过程,计算出统计规律的离差与涉及粒子数量的平方根成反比。 他对基因复制进行了一番计算。单个基因的体积是边长不大于300埃的立方体,能够容纳大约100万个原子。按照经典的统计学规律推断出的遗传中的不精确性或“噪音 ”应该是0.1%。但是事实上基因的变异率小于1/10^9。这种非比寻常的高精度让薛定谔相信,遗传规律不可能建立在“来自无序的有序”的经典定律之上。相反,他认为基因更像是单个的原子或分子,符合另一科学领域的规律——量子力学领域。遗传应该基于一种新的原理,即“来自有序的有序”(order from order)。 生命是量子的随机散布的粒子可以通过重新排列整齐来揭示其隐藏的量子性质,但这种重新排列通常只能 在特殊环境下进行,而且只能维持极短的时间。 比如,基于量子自旋,散布在我们体内随机自旋的氢原子核,可以排列整齐生成一个连续一致的核磁共振信号,但只有在一个由强力磁铁提供的极强磁场中,而且只有当磁力能够维持时才能实现:只要磁场一关闭,粒子又会在所有分子的冲撞中恢复随机排列,量子信号重新变得分散而难以探测。随机分子运动会干扰精心 排列的量子系统,这种现象被称为“退相干”(decoherence)。正是这种现象快速地抵消掉了宏观非生命物体奇特的量子效应。 只有当物体温度降到接近绝对零度——-273℃——随机分子运动才会完全静止,并使退相干现象消失,量子力学的作用才会显现出来。 但是,生命不同于非生命物体的不同之处在于,数量相对较少却高度有序的一些粒子,比如一个基因或是鸟类罗盘内部的那些粒子,能对整个生命体造成巨大的影响。这正是约尔旦所说的 “放大效应”,也是薛定谔所谓的“来自有序的有序 ”。
|